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ING BOUNDARYLAYER

The problem of interest is the boundary layer over a flat
plate. The boundary layer grows in space and the transition
process is one which occurs in space (in the streamwise direction
along the plate). The figure illustrates the growth of the
displacement thickness 6*. The Reynolds number Re depends on x
and is based on the free-stream velocity u , the displacement
thickness, and the free-stream kinematic vlscoslty v . With
present computers, 3-D nonlinear simulations of the growing
boundary layer can cover only a very small portion of the
transition process due to the extreme demands on resolution in
the streamwise direction.
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ORIGINAL PAGE IS

o_OOR QUALIT_ PARALLEL BOUNDARY LAYER
--_hUm_ml _

The parallel flow assumption ignores the growth of the

boundary layer in the streamwise direction. It reduces the

resolution demands by making feasible the use of periodic

boundary conditions in the streamwise direction. Some typical

point xo is chosen as the reference location, and the
computational domain extends over 1 or 2 Tollmein-Schlichting

(TS) wavelengths ITS.
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._-'_m,_. ..BOU_ARY LAYER CONTROLS

The three standard laminar flow control (LFC) techniques are

pressure gradient, suction, and heating. The figure illustrates

how each technique affects the mean flow. It also introduces the

parameters used to describe the amount of control in the context

of the boundary layer equations: 6 for the pressure gradient, Fw

for suction, and • for heating. The latter influences the flow

through the dependence of the viscosity upon temperature.

Pressure gradient P

uoo a x2-P

Suction

Vwall = -ii 2_/u_ Voox Fw

Heating "_ = Tw/ Too

v = v(T)

Too

Tw
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CONTROLLED,PARALLEL BOUNDARYLAYER

The parallel flow assumption permits the use of Fourier
series in the streamwise (x) and spanwise (z) directions. The
wavenumbers _ and 8 are real. The basic equations describing the
mean flow are discussed on the figure.

• Parallel flow assumption

U(X, Y, Z, T)=U(Y) ei (aX + 13Z-wT)

• Mean flow described by Faulkner-Skan equation with pressure gradient,
suction and/or heating controls

• Viscosity and conductivity based on empirical formulas for water

• Reynolds numbers based on displacement thickness and free-
stream conditions
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NUMERICAL METHODS

Numerical methods are required to find the mean flow, the

linear eigenvalues of the Orr-Sommerfeld equation, and the full,

nonlinear, 3-D solution of the Navier-Stokes equations. The

specific numerical methods used in this work are outlined on the

figure.

• Nonlinear mean flow

4th-order compact finite difference scheme

• Linear modes

Chebyshev Tau method (ref. I)

• Navier-Stokes solution

• Fourier-Chebyshev collocation in space
• 3rd-order Adams-Bashforth on explicit terms
• Crank-Nicholson on implicit terms

(vertical diffusion, pressure and continuity)
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NAVIER-STOKES ALGORITHM

The full, nonlinear 3-D, incompressible codes have been
implemented on the NASA Langley VPS 32 in both 32-bit and 64-bit
arithmetic. The characteristics of the machine and the
performance of the code are listed on the chart for 64-bit
arithmetic. The storage and speed figures are twice as large for
32-bit arithmetic. Calculations have been performed on 1283
grids with the Fourier-Chebyshev code in 32-bit arithmetic. They
take 25 sec/step and run at a sustained speed of 220 MFLOPS.
About 25% of the CPU time is devoted to transposing the data.
Hence, the actual computations are being performed at nearly 300
MFLOPS.

• Implemented on VPS 32
• Cyber 205

• 16 million

• 200 tVifiops peak speed (64-bit)

• 80-120 Mflops sustained (64-bit)

• Performance of the Fourier-Chebyshev code

• 323 grid: 2.5 sec/step

• 643 grid: 10 sec/step

• Performance of the Fourier-FD code

• 323 grid: 0.5 sec/step

• 643 grid: 3.0 sec/step

architecture (2 pipes)

words (64-bit)
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INITIAL CONDITIONS

The initial conditions for the nonlinear simulations consist
of the mean flow (Uo) plus a combination of 2-D and 3-D
eigenvalues. The eigenfunctions U2D and U3D are normalized so
that their maximum value is i.

C

U (X, Y, Z, O) = RE [U 0 (Y)

iaX
+ £2D U2D (Y) e

+ e3D U3D (y)e i (aX+I3Z) ]

+ £3D U3D (Y) ei (aX-pZ)

maxIU2D(Y)I = max I U3D(Y)I = I
Y Y
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FOURIER DECOMPOSITION

The importance of individual components of the flow field
can be ascertained by examining the amplitudes of the horizontal
Fourier harmonics of the solution. The individual harmonics are
labelled by the rational numbers kx and k z which measure the
horizontal wavenumbers relative to those present in the initial
condition.

U (X, Y, Z, T)=_-_. k_ Ukx' kz
kx z

(Y, T)

i Ikx.X.k2Z)e

Ekx' kz(T)=/I Ukx' kz(Y,m)!2 DY
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BOUNDARY LAYER MODES FOR Re = 8950

This table lists the linear TS waves which are used to form

the initial conditions for the numerical simulation. The control

parameters are 8 = 0.55, F w = 0.895, and T = i. I0. The numerical
code does an excellent job of reproducing the linear results.

Linear Computed
Control Mode a 13 growth rate growth rate

Pressure TS 2-D O.168 0.000 0.000095 0.000096

TS 3-D O.168 O.168 -0. 001012 -0. 001028

Suction TS 2-D O.162 O.000 O.000093 O.000093

TS 3-D O.162 O.162 -0. 000968 -0. 000993

Heating TS 2-D O.150 O.000 O.000093 O.000097

TS 3-D O.150 O.150 -0. 000798 -0. 000793
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SECONDARYINSTABILITY OF HEATEDBOUNDARYLAYER

This figure lists the energy in several Fourier harmonics
for a simulation of a boundary layer at Re = 8950
with T = i.i0 and a wall temperature of 293K. The initial
conditions were a 2-D and a 3-D TS wave, with e2D = 0.05 and C3D
= 0.0001. The harmonics are labelled by (k x, kz). Both TS waves
are linearly stable. Nonlinear effects induce an instability
which ultimately leads to turbulence.
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3-D ENERGYVERSUSWALL HEATING

The secondary instability is sensitive to the amount of
heating. In these calculations e2D = 0.05 and e3D = 0.0001, and
the energy for the 3-D mode is shown. It is the mode labelled
(i,i) in the earlier figure. A 1% wall heating has a slight
stabilizing effect. If this is combined with a selective control
of the (0,i) spanwise mode, then the secondary instability is
eliminated entirely.
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3-D ENERGYVERSUS 2-D AMPLITUDE (UNIFORM HEATING)

Even a 1% 2-D TS wave is sufficient to induce the secondary
instability in the boundary layer with wall heating. The
instability at this Reynolds number is so severe that selective
control of the spanwise mode cannot remove it.
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3-D ENERGY VERSUS 2-D AMPLITUDE (UNIFORM PRESSURE GRADIENT)

Even a 1% 2-D TS wave is sufficient to induce the secondary

instability in the boundary layer with pressure gradient. The

instability at this Reynolds number is so severe that selective

control of the spanwise mode cannot remove it.

Boundary layer with uniform pressure gradient
Re = 89.50, 15= O.55
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3-D ENERGY VERSUS 2-D AMPLITUDE (UNIFORM SUCTION)

Even a 1% 2-D TS wave is sufficient to induce the secondary

instability in the boundary layer with suction. The instability

at this Reynolds number is so severe that selective control of

the spanwise mode cannot remove it.

Log
(energy)
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SUMMARY

• A secondary instability exists for the parallel boundary
subject to uniform pressure gradient, suction or
heating

• Selective control of the spanwise mode reduces the
secondary instability in the parallel boundary layer at
low Reynolds number
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